: a power series that gives the expansion of a function f (x) in the neighborhood of a point a provided that in the neighborhood the function is continuous, all its derivatives exist, and the series converges to the function in which case it has the form {latex}f(x) = f(a) + \frac{f'(a)}{1!}(x - a) + \frac{f''(a)}{2!}(x - a)^{2} + \dots + \frac{f^{[n]}(a)}{n!}(x - a)^{n}{/latex} where f[n] (a) is the derivative of nth order of f(x) evaluated at a
called also Taylor's series
Love words? Need even more definitions?
Merriam-Webster unabridged
Share